
Aarne: se Ee

w ZDU # 34 JAN FEB 1 2292

i E OOS SE NDE SS era Ra HHH HHHH

dee aT alan K LE TULS!
if i i

DOWN UNDER CLUB

Editor Treasurer

Harry Huggins Ron Allen
12 Thomas Str. 2 Orlando Str.

Mitcham. 2132 Hampton. 3188
0353-873-1408 03-598 -433

HAPPY NEW YEAR EVERYONE.

What has the NEW YEAR in store for VEE ZEDers? A lot of good
programs and suggestions, and just in case [have'nt mentioned it
Defor ~- — a lot of contributions to the Newsletter. Remember I
expect (hope) one contributation per member per year (per haps)! So
what about it. |

On behalf of the club members I extend to Bob Kitch our special
thanks for the support he has given the VZ clubs in the past, and we
hope for it to continue. He is a very regular contributor, and without
his support the VZDU would have folded long ago. Thanks Bob from me and
all our club members

I understood that there was going to be one more instalment of the
series on Writing Mystry games by David Wood. Perhaps I was mistaken.
Thanks David for a very good series. I Know that many followed it by
the requests I got for the Demo program on disk/tape. However David
specified it was not to go out on disk/tape. I have had 4 requests for
the printout (that may be borrowed from our library). David has moved
onto bigger and better. (?) computers. If it is IBM Compat. I hope to
hear from him on IBM.

Paul has not come up with a Games Column, but I have received a
Review of 3 games from Tim Pendlebury, which he wrote whilst preparing
to break up the Watson/McLean monopoly of the High Scores.

Many of our members have expanded to IBM Compatiable computers. I
would like to hear from ex VZers, and maybe form another group in. the
IBM field. I don't aim to start another Newsletter, but we could
exchange memories of when things were simple with a VZ.

You will find the 2 items missed from last issue. The circuit for
Ben's remote control, and listing 5 from Bob's program. Sorry about
that. You will have noticed we had some printing problems.

BUNNY
- You can rest easy. This is not an entry in-the competition. It

was comverted from another computer.

I shall go through it and explain how it works. If you have
already worked it out, then there is no need to read this.

— 90005 CLS: |
. 00010 LPRINT “ © BUNNY
90030 LPRINT:LPRINT:LPRINT |

| “Toa here you should need no_explanatiori.

00120 FOR I=0T04: READ B(I): NEXTI |

This is a simple READ instruction loop that reads the First ba

items of DATA. That is B(O)=2s B(1)=21: B(2)=14: B(3)=14: b(4)=25

00130 GOSUBZ460
260 FORI=1T06: LPRINTCHRS (10) 5: NEXT; I-----CHR$10 is LINEFEED. So

this put in 6 blank lines and returns to run 140.

00140 L=64---—-No comment here now.
00160 LPRINT----- This is another blank line.

00170 READ. X: IFX<OTHEN1 60
READ X. Earlier we read B. It matters not what you call the data

you read, it will be the next item from DATA. In this case it will be =

1. X=1.It is not <0 nor >128 so we go to sates l

00175 IFX>128THEN240

00180 LPRINT TAB(X);:READY —-We will iprint at TAB(1)——But first we

READ Y. Y will be 2. 7
00190 FORI=XTOY: J=I-S£ZINTCI/S)

To get the value of J enter this formula in your computer and >

enter the values of X and Y.

FOR-I=X to ¥. That is 1 to 2.
First J=I-SSINT(I/5). It will be 1
00200 LPRINTCHRS (L+B(J)) 5

Now the tricky part. What are we going to iprint? CHRS(L+B(4))

B(i) is 21. L is 64. Sa we print CHR$85. 85 is U. NEXT goes back for

another I. |
00210 NEXT I

J=I-SSINT(I/5) |
This time J=2. Bt2) is 14. 64+14=78.. CHR$(78) is N. So it Iprints |

00220 GOTO 170 Back to 170

00170 READX: IF X<OTHEN160
READ X.

X=-1. This time it is less than O so we goto 140. —

00160 LPRINT.: That is a line feed. Sa we have got the TAB(and the

line feed by reading DATA. And so far we have had UN printed: After

160 is 170.

00170 READX: IFX<OTHENI60

READ X. This time X=0. `
so we go to 180. |

00175 IFX>128THEN240 2
00180 LPRINT TAB(X)::READ Y --We will Iprint at TAB(0)--But first we `

READ Y. Y will be 2.
00190 FORI=XTOY: J=I-SkINTCI/5)

‘FOR I=X to Y. That is O to 2.First J=I-S@InTtI/5). |
This time SOES are 3 numbers (From O- ee 2) ane Ehe Be Salis eae.

us 0,1,2. os - “aA
00200 LPRINTCHRS(L+B(J))

This time it prints out 64 pilus B(O),B(1)- and RAR, Fhat s BUN:
-o NEXT goes back Ffor another I.
= 00210 NEXT E >-

- OOL7O- READX: IFX<OTHENI40O «-

READ X. This time- ETERA

-90 we go to 180. _ r ;

=: 00475- IFX3 126THEN2Z40 -- p

- 00180 LPRINT TABOX) şs READ- Y: We wilt ee 2E TORTINI eee first we-
READ Y. Ywill be 50; | |

Notice that this- kera ibere is no- DATA — $ (ine feed) ea. this will

be printed on the same line as BUN, but at TAB(4S)-. -
00190 FORI=XTOY: J=I-S&INT(I/s) | :

FOR I=X to Y. That is 45 to 50.First J=I-S£sINT(I/5).
This time there are 6 numbers (from 45 to 50) and the Formula

Gives us 0,1,2,3,4,0
00200 LPRINTCHRS(L4+B(J))s

This time it prints out 64 plus B(O),B(1t), B(2), Bt(3), B(4) and
B(O) That is BUNNYB "NEXT goes back for another I.
00210 NEXT I :

And so it will go on. All controlled by READing X and Y from the
DATA. At the end of this is a little program you should type in and
alter the values of X and Y and it will print out the sequence of
values for B(j) that will print. Even the END is called from DATA. The
last DATA bit is 4096.Line 175. If X5128 then240. Line 240 is GOSUB
260. 260 puts & blank lines in and returns to 240 and is sent to line

450 which is END.
00240 GOSUB260: 6070450
00260 FORI=1T06: LPRINTCHRS$(10)3: NEXT I
00270 RETURN 3
00290 DATAZ, 21,14,14,25
00300 DATAI, 2,—1,0, 2,45, 50,-1,0,5, 43,52,-1,0,7,41,52,-—1
00310 DATAI,9, 37,50,—-1,2,11,36,50,-1,3, 13,34, 49,-1, 4,14, 32, 48,-1
00320 DATAS, 15, 31,47,-1,6,16, 20, 45,-1,7,17,297,44,-1,8,19,28,43,-1
00350 DATA?, 20, 27,41,—-1,10,21,26,456,-1,11,22, 25, 38,-1,12, 22, 24,36
00335 DATA-1

00340 DATAIS, 34,-1,14, 33, —-1,15,351,-1,17,29,-1,18,27,-1
00350 DATAII, 26,—-1,16, 28, -1, 13, 30,-1,11, 31, -1,10,32,-1
00360 DATAS, 33,—-1, 7,34,—-1,4,13, 16, 34,-1,5, 12, 16, 35,-1
00370 DATA4, 12, 16,35,—-1, 3,12, 15,35, -1, 2, 35, -1,1,35,-1
00380 DATA2, 34,—-1,3,34,—-1, 4,33, —-1,6,35,-1,10, 32, 34, 34,-1
00390 DATA14, 17,19, 25, 28, 31,35, 35,-1,15, 19, 23, 30, 36, 34, -1
00400 DATA1I4, 18, 21,21, 24,30, 37, 37,—-1, 13, 18, 23, 29, 33, 38,-1 a
00410 DATA12,29,31,33,—1,11,13,17,17,19?,19,22,22,24,31,-1

00420 DATA10,11,17,18,22,22,24,24,297,29,—1
00430 DATA22, 23, 26, 29, -1,27, 29, -1, 28,29, -1,4096
00450 END

Kw

X kk

KK k

LISTING 3
Kk KKK KA KKK KK KKK KKK KKK KKK

1536 VZ SCREENS ***
VERSION 1.3

R.B.K.

xx*x

18/5/86 ***
KKK KKK KKK KK KKK KKK KEK KKK

'***FIND TOP OF MEMORY AND PROTECT 20 BYTES BY LOWERING TOM.
IF PEEK (30791)=77 THEN GOTO 500
M1=PEEK (30898) :L1=PEEK (30897)
TM=M1*256+L1-21
MS=INT(TM/256) : LS=TM-MS* 256
POKE 30898,MS:POKE 30897,L5
CLEAR 50
‘THIS ACTION DESTROYS THE VLT-ALL VARIABLES MUST BE RENEWED.

M1=PEEK (30898) :L1=PEEK (30897)
ST=M1*256+L1+1
MS=INT(ST/256) :LS=ST-256*MS
IF ST>32767 THEN ST=ST-65536

:'7847H AS LOAD CHECK.
:'TOM POINTERS.
: 'PROTECT 20 BYTES.
: 'NEW TOM POINTERS.
:' SET NEW TOM.
:'RESET ALL POINTERS.

: 'NEW TOM POINTERS.
: ' NEXT ADDR IN RESERVED
:'START OF ROUTINE.
: 'CONVERT TO SIGNED INT

'***LOAD MACHINE CODE INTO PROTECTED TOM AND SET USR POINTER
CLS: PRINT@230,
C5%=0
FOR ID=ST TO ST+15

"LOADING MACHINE CODE"
:'CHECK SUM COUNTER.
:'LOAD 16 BYTES TO TOM.

READ VL%:POKE ID, VL%:CS%=CS%+VL% :'LOAD M/L INTO PROTECT

NEXT ID
IF CS%< >1483 THEN GOTO 1000
POKE 30863,MS:POKE 30862,L5

POKE 30791,77

: 'WRONG DATA.
: 'SET USR POINTERS.
:'SET LOAD CHECK.

‘'***Z—80 BLOCK MOVE ROUTINE.

DATA
DATA
DATA
DATA
DATA
DATA
DATA

058,
033,
017,
001,
119
237 »

201

033;
000,
001,
299;

176

121
LIZ
112
007

:'LD A,

-'LD HL,7000H (#28672D START VIDEO RAM)

:'LD DE,7001H (#28673D NEXT)

-'LD BC,O7FFH (#2047D SIZE OF VIDEO RAM)

:'LD (HL),A
:'LDIR

: ‘RET

(7921H) PICK UP VALUE FROM USR().

(BLOCK LOAD COMMAND)

‘*** INITIALIZE DELAYS - CONTROL SPEED OF EXECUTION BY D.
T%=0
D%=4
P%=30744

:' TONE IS REST (0-31)
:' DELAY IS SHORT(1-9)
:'SET UP SCREEN MODE.

‘***THTS LOOP DOES A LOT OF WORK.
'x**TT LOADS ALL VALUES INTO THE A-REG FOR VIEWING.

'***TT SWAPS BETWEEN HI- AND LO-RES SCREEN MODES.

'***IT SWITCHES BETWEEN NORMAL AND INVERSE SCREEN TYPES.

‘***IT SWITCHES BETWEEN GREEN AND ORANGE BACKGROUNDS.

FOR A%=0 TO 255
MODE(0):POKE P%,0
CLS: PRINT@234,
X=USR (A%)
COLOR, 0 : SOUND T%,D%!
COLOR, 1: SOUND T%, D%
POKE P%,1
X=USR (A%)
COLOR, 0: SOUND T%, D%
COLOR, 1 : SOUND T%, D%

' HI-RES SCREENS.

:'ALL VALUES PUT INTO A=REG.

"VALUE = ";A%:SOUND T%, D%
== ‘eb o n am a n o eas

710 _ MODE(1)
720 °.° X=USR(A%)
730 COLOR,0:SOUND T%, D% os
740 COLOR,1:SOUND T%,D%
730 NEXT A%
800 GOTO 600
999 '***WRONG DATA MESSAGE.
1000 CLS:PRINT@230, “ERROR IN DATA " ears

oA

BUMPER SWITCH 1 BUMPER SWITCH 2
2K2

+5

BUSY /READY

+5y

+5v

D1

+5v

C
BC108/548

E
D2

Computer Controlled Robot

Drawn by Ben Hobson
14-08-1991

For use on Parallel Printer Port

BC 108/543

BUSY /RE ADY carn tas

bb
pH

PARS BLSESi

4 - 2k2 Resistors
3 - 10k Resistors
3- luf Capacitors
2- Double Pole Double Throw Sy Relays
1 - Single Pole Single Throw Sv Relay
3 - BC108or similar transistors `
3 - IN4001 or similar Diodes

4- N0. Microswitches

2 - Motors

1 - Battery to Suit motors

CEECEE T A eine 40 iiA

FAST BASIC
Connecting Machine Code toa Basic -

by Bob Kitch

I have written about my FAST BASIC technique and used it in my LIVENUP

and SOUND series of programs for the VZ. It is a hybrid language. A

number of users have also asked how it is done. I will endeavour to

provide an interesting and illuminating discussion of the technique.

This is an invitation to explore this significant enhancement of

normal Basic. For programmers who are looking for better (smarter or

faster) ways to write programs, then this is of interest. Also, for

Basic programmers who are wrestling with Z80 Machine Code, then FAST

BASIC provides an ideal introduction.

To fully understand FAST BASIC we need to explore -—

1. how a Basic program is structured in memory,
2. how to reserve an area of memory for Machine Code, and

3. understand how to connect Machine Code with a Basic program.

Before I commence, it is worth mentioning some books, that most users

will have in their collections and that will reinforce the

explanations that I provide. The DSE Technical Manuals for the VZ 200

and 300 (1983 and 1985) are useful. Steve Olney's book (1987) on

Assembly Language for Beginners is also very useful on these topics.

For a well-paced introduction to 280 Assembly Language programming,

the two Tandy/Radio Shack books by Bill Barden (1979 and 1982) for the

TRS-80 are as good as any, particularly since the ROM in the TRS-80

and VZ is very similar. You may have to hunt around for copies of

these books as they are out of print.

Let's start by looking at the structure of a Basic program in memory.

1. FIVE BASIC TABLES & MEMORY UTILIZATION.

By knowing the organization of a program in memory, we can make it

perform more efficiently. Although you have probably never thought of

it this way, (and it is certainly not mentioned in the VZ Manuals!), a

Basic program running on the VZ actually consists of FIVE TABLES.

Basic programmers are very familiar with the first of these, the

PROGRAM STATEMENT TABLE (PST), as this is the actual tokenized

(compressed) program, or source, that is written.

The other tables are "written" by the Interpreter when the program is

executed. The VARIABLE LIST TABLE (VLT) actually consists of two

parts, the SIMPLE VARIABLE TABLE (SVT) and the DIMENSIONED VARIABLE

TABLE (DVT). These are positioned above the PST and "grow" as the

program executes and "discovers" more variables - that is they are

dynamic whereas the PST is static once execution commences. (The PST

grows as you write the program).

The remaining two tables are located below the Top-Of-—Memory (TOM).

(For DOS systems, the TOM is located below the DOS Vector) The

6

uppermost one is the STRING AREA that stores the string variables used
by a Basic program. Note that quoted strings are stored in the PST.
The number of bytes reserved is fixed by the CLEAR command and the
default is 50 bytes. It is a static table.

Below the String Area is the STACK which "grows" downwards in memory
and is dynamic or changeable. The Stack is used by the Z80 for PUSHing
and POPping registers and also by the Basic program to keep track of
GOSUB/RET and FOR/NEXT calls.

This completes the five tables used by Basic. The intervening area of
RAM below the Stack and above the VLT is called FREE SPACE LIST (FSL)
or unused memory. It is bounded above and below by dynamic tables
(Stack and VLT) and the size of FSL changes as program execution
proceeds.

(You may want to read the preceding paragraphs a few times, as it
gives a rather "different" view of a Basic program to what you are
probably used to.)

A memory map of this situation with the <pointers> indicating the
start and end of the various tables would be as follows _

\' seme e eee eee ee See eee eee EZ I < IY reg>

' Top of Physical Memory :
! DOS Vector on disk systems!

B l aan EEEE ET l < 78B1/2H>

A ! String Area !
G Teden e ! <78A0/1H>
I ! Stack !
C tees eee ae See es ! <78E8/9H>

a
D

W ! Free Space List !
O ! !
Rl ee ! <78FD/EH>
K ! Dim'd Variable Table

Oi a a et a ma ann et a nn ence cs i ce ! <78FB/CH>
A ! Simple Variable Table ;
Root reer ee ! <78F9/AH>
E ! Program Statement Table i$!

! Communication Area ! |
| as i es ! 7800H
! Video RAM E
l eenei ! 7000H

All of,these subdivisions of RAM used by Basic are not fixed and move
up and down depending upon what actions are performed. Inserting or
deleting a line from a Basic program alters the size of the PST.
Similarly, defining a new variable, increases the length of the VLT.
The String Area can only be changed by the CLEAR statement and this
causes the relocation of the Stack. This is a very drastic action and
results in a major "reset" of the various tables. How does the
Interpreter keep track of these tables?

Since the origin of thé tables may shift, their addresses are kept as
POINTERS in the Communications Area of the VZ. I trust that there is
beginning, some dawning of the relevance of information given in the
VZ Technical Manuals. On page 11 or 20, of the VZ 200 or 300 manual
respectively, the various pointers are given. Olney page 125 and
129-130 provides a clear description of the foregoing. If you have
these publications, then spend some time understanding the structure
of a Basic program in memory. :

The manner in which information is packed in each table is a very
interesting topic, but will be left for another time as it is not

required at present.

2. RESERVING RAM FOR MACHINE CODE.

I will discuss the various ways that Machine Code (M/C) can be located
in memory along with the Basic program. They fall into 4 types -

i. Loaded into RAM with the Basic program — appended or embedded.
ii. Poked into RAM from the Basic program — set-up time required.
iii. Already existing in ROM - ready to run.
iv. Loaded into RAM as seperate programs - two or more modules.

Type i. can be located below the PST and above the Communication Area.
The COPYPRO program of Larry Taylor uses this technique. Method 1 in
the VZ Technical Manuals describe the method. Method 2 in the
Technical Manuals describes how to locate M/C above the PST and below
the VLT. Olney on page 47 also describes this technique. The latter
technique is a better method than loading M/C below the PST. Both
methods have the advantage that a single module, of combined M/C and
Basic, is loaded into co-joined memory locations.

Type ii. methods have a number of variants. Generally the M/C is held
in DATA statements within the Basic program located in the PST. The
thing that is interesting about this technique is that the M/C can be
POKEd into the Basic Program and embedded in the PST, POKEd into FSL
or reserved memory, or put into the VLT or String Area. It is
obviously very flexible. Techniques that modify the PST imply that the
POKEing of the M/C need only be done once and that it is subsequently
loaded along with the Basic program. The other techniques are not
particularly memory efficient, as two copies of the M/C are held in
the PST, in the DATA statements, and also in its run-time location.
Method 3 in the VZ Technical Manuals lowers the Top-—Of-Memory to
create a reserved are of RAM below the DOS vector and above the String
Area. Olney also describes the method on pages 37-38. Following this
lowering it is necessary to reset all of the Basic pointers with a
CLEAR. (now you understand why!). This is by far and wide the best
method to locate M/C as it gives it an unambiguous and protected area
in which to operate. It is easy to debug also as the area can be
disassembled if required. Once a reserved area of memory is made, the
M/C can be POKEd in as is done in my TONEGEN program, or it may be
loaded in from disk as is done with MOVEUP in my LIVENUP program. The

memory map for this arrangement is as follows -

(az arcu ase SSS Bea aS BASS SASS Ss t < LY reg>

! Top of Physical Memory !

t DOS Vector on disk systems!
lar RSS Ss t

i | '

! Reserved TOM Area -
' ! <788E/FH>
l BR BERRARBRBEBAS SASS SSS = l < 78B1/2H>

' String Area !
E a ! <78A0/1H>
! Stack : paste eh meee ears renee ae | <78E8/9H>

There are other methods of POKEing M/C into RAM. The one used in my
SOUND EFFECTS program, simply POKEs the code into FSL, but this can be
risky because the VLT or the Stack could "grow" into the M/C and
corrupt it. This can be a frustrating bug to discover. Use it only
when you have a short program and lots of memory!

On pages 38 to 47 of Olney there are a couple of other Type ii.
methods described. They have certain restrictions that make them
difficult to use and require that short pieces of M/C be used. Their
advantage is that once loaded, they are embedded in the Basic program
and become Type i. The code is read from DATA statements and POKEd
into REM statements or string variables located within the PST. The
sections of the PST so altered, cannot be editted after this
modification. These techniques do have the advantage of only requiring
a single program to be loaded. Barden (1982) devotes Chapter 5 to
these techniques also.

There is a further Type ii. technique that has had a whole book-
written about it! Lewis Rosenfelder's (1983) "Magic Memory" techniques
simply read the M/C from the PST and place it into arrays stored in
the DVT - no poking is required. Very long M/C programs can be stored
in this manner. As the DVT is pushed up by the SVT, it is necessary to
use the VARPTR command to keep track of the start of the M/C.

Type iii. are very satisfying to use and simple to set-up. You are
using M/C that already exists within the resources of the ROM. There
are a lot of useful routines contained in the VZ's ROM. A good
knowledge of the ROM is required to use this technique. My SOUND
EFFECTS program uses this technique to use the BEEP routine located in
ROM at 3450H. The VZ Technical Manuals contain outlines of the

“useful” ROM routines.

Type iv. techniques are best used by programmers writing for DOS-—based
machines and are "two module" approaches to the problem. Two (or more)
programs are loaded from disk. The first will usually be the Basic
program that loads into the PST. Upon execution, it lowers the
Top-Of-—Memory to make a reserved area, does a CLEAR to reset pointers,
and then BLOADs a M/C program into the reserved area. The Usr Pointers
are then set to the entry point of the M/C. Somewhere in the Basic
program the USR command is executed and the M/C run. Upon RETurn, the
Basic program continues. My Basic THROWUP program repeatedly calls
MOVEUP, located in reserved TOM position, to achieve the screen moves

22

and is a Type iv. method. The M/C is usually written in Assembly

Language using the EDASM, rather than POKEing decimal values.

3. THE USR() STATEMENT- using Machine Code from Basic.

The usual method of establishing a link between M/C and a Basic

program is to call the USR command. This command is very convenient

and incredibly powerful but is almost ignored in the VZ programming

manuals. My REAL TIME CLOCK program is connected by stealing the

Interrupt Vector - a totally different technique. M/C is used to speed

up certain procedures that are too slow in Basic. Olney (1987, page

33) provides an interesting discussion of his views on the

relationship between Basic and M/C. Nothing beats the Basic language

for a quick and simple way to program applications. But, when

super-fast execution speed and truly economical memory usage is

required then M/C is supreme. This is in fact the essence of FAST

BASIC.

In order to implement the USR command, a Basic program and some M/C

must be in memory. The previous section discussed various methods and

places where M/C can be placed in RAM. M/C in ROM may also be linked

via the USR statement. The Usr Vector or Pointer must be initialized

so that the Z80 knows where to continue code execution. Furthermore,

the M/C routine must end with a RETurn command so that an orderly

resumption of Basic takes place. Additionally, it may be desirable to

pass parameters between the Basic program and M/C.

The USR pointer is located at 788E/FH (30862/3D) in the Communication

Area. When the VZ boots up, this vector is initialized to 4A1EH and

executes an error message. (?FUNCTION CODE ERROR IN XX) This prevents

the use of the USR statement without first setting the pointer.

Por those that are interested, the Basic Interpreter at 24FFH tests

for the USR token (C1H) and, if found, jumps to the verb action

routine located at 27FEH. You may wish to Disassemble the routine.

When the USR pointer is set to the address of the M/C routine it can

be called by using X=USR(X). In the simplest case the argument X is a

dummy, that is, it is not otherwise used in the program. The statement

causes a jump to the memory address indicated by the Usr Pointer,

executes the M/C routine, and then returns to the following Basic

statement. In a way, it resembles the Basic GOSUB statement. Thus the

link between Basic and M/C is made.

In other situations a parameter can be exchanged between the Basic and

M/C program, which can be defined as constants of all types of

variables and also strings. The parameter being passed is stored in

the Basic accumulator (WRA1) on executing the USR command. If a string

variable or constant is used, then WRA1 acts as a memory pointer to

the string descriptor block (length and address). On RETurn to Basic

from the M/C routine, the content of WRA1 will be stored in the

variable defined by the USR(X) and can be used by the Basic program.

If the previous paragraph was not clear to you and you only wish to

pass integer values between programs, then this method is easier to

understand. The integer constant or variable enclosed in the () is

passed to locations 7921/2H (31009/10D) and can be accessed by the M/C

10

routine. An example of the use of this facility was given in APC Feb.
1986, page 127. —- although a considerably more elegant and shorter
method is available.

Well there was some pretty heavy going in that description, but I hope
you will try to work through it, as it provides a very good insight
into the Basic Interpreter in the VZ. Any queries are always welcome
via the Editor. I will try to answer them and provide some programs
that demonstrate the various techniques if there is sufficient
feed-back. FAST BASIC is fun and it permits incredible things to be
done with the VZ.

KOK KOK KOK KOK ok KOO ok ok eo
x x

aK FRrROGRAM— i aK

xK x

WK OK OK KKK OK OK OOK 3K OOK OK OK OK OK OK OOK

10 POKE 30862,80:POKE 30863,52 :’SET USR POINTERS TO BEEP
20 AZL=250: X=0

30 X=USR (AZ)

40 FRINT PEEK (31009) ; PEEK (31010) sA%: X

JO AS=""

6560 AS=USR ("AFTER")

70 PRINT A$

80 STOP

47

THREE REVIEWS

by TIM PENDLEBURY

REVIEW 1: DEFENCE PENETRATOR

"Defence Penetrator" is th first game Tom Thiel wrote, of the three games I will

review.

Defence Penetrator has six (6) stages, the first being the easiest to complete and

the last two (2) the hardest. The game is made harder by having to shoot the ammo

and fuel boxes while avoiding the missiles and fireballs. You are always moving so

you can't come to a complete halt. Try not to go into the valleys as you have to

slow down and it's a waste of time.

I have seen this game, and "Road Warrior", using joysticks, but only on disk, too
long for tape (5 minutes I think) and it doesn't always load.

Movement keys are——Q = UP, A = DOWN, — = FORWARD, 0 = BACKWARD, M = FIRE, 3 = PAUSE,

4 = UNPAUSE.

I really enjoyed this game.

REVIEW 2: ROAD WARRIOR

- I played "Road Warrior" some weeks earlier under the name "Pursuit". This game is

apparently the first version of "Morgoth".

"Road Warrior" is a maze with no way out. It has no stages and a scoring system

which disappears too quickly to be recorded. As you make your way around the maze

you have to avoid the objects that I call "shadows". They are the same colour as the

background and you can only see their outlines. You have two (2) "screens" on your

viewer and you have to constantly watch both screens. The lefthand and the largest

of the screens shows the maze, your white ship, the "shadows", and little "F's which

I think mean "Fuel". The righthand screen is a radar. It shows your ship and the

"shadows" as white and black dots. Your ship is always moving fast and you have

little reaction time, making the game hard.

Movement keys are——Q = UP, A = DOWN, — = RIGHT, O = LEFT.

I found this game to be interesting, but frustrating.

REVIEW 3: MORGOTH

"Morgoth" is an update version of "Road Warrior" and has similar problems.

Like "Road Warrior", "Morgoth" has a maze with no way out. Your little ship has now Ž

grown up and now when you release the buttons it stops. You still have to avoid the

"shadows". Having graphic flicker running across my screen makes it harder to see

them. As you move around the maze you collect different objects each having its own

score. The scoring system has improved, but it also disappears too quickly.

Movement keys are: Q = UP, A = DOWN, — = RIGHT, 0 = LEFT, 3 = PAUSE, 4 = UNPAUSE.

I enjoyed "Morgoth" much better than I did "Road Warrior" and I think that to get to

the harder levels you must collect all the different objects.

72

ni
T THE HIGH SCORE

GAME SCORE LEVEL HOLDER

DAWN PATROL 78100 Paul Frantz
CRASH 881 Matthew McLean
DIG OUT 52500 Kenley McLean
HAMBURGER SAM 51000 Roger McLean
LADDER CHALLENGE 23970 Peter Watson
KAMIKAZE 113410 Peter Watson
TEN PIN BOWLS 215 Mitch Pendlebury
VZ INVADERS 30160 Peter Watson
GALAXON 328,460 Mathew McLean
PENGUIN 2800 Matthew McLean
LUNAR LANDER 92520 Peter Watson
SUPER SNAKE 1918 Peter Watson
MAZE OF ARGON 78306 Peter Watson
ASTEROIDS 110000 Peter McLean
CIRCUS 3180 Matthew McLean
PANIK 11090 Martin Wedgwood
HOPPY 29550 Matthew McLean
GHOST HUNTER 23400 Chris McLean
KNIGHTS & DRAGONS 5300 Rasy Peter Watson
KNIGHTS & DRAGONS 1200 Expert Peter Watson
SPACE RAM 1441 Matthew McLean
MISSILE ATTACK 52000 Heru McLean
BUST OUT 2600 Peter Watson
PLANET PATROL 1091 Peter Watson
DEFENCE PEN. 1563 Peter Watson
PHAROAH'S CURSE 135 g/bars SKill5 Peter Watson
STAR BLASTER 787 level 1 Tim Pendelbury
STAR BLASTER 683 level 2 Tim Pendel bury
STAR BLASTER 625 level 3 Tim Pendelbury
STAR BLASTER 419 level 4 Tim Pendelbury
STAR BLASTER 219 level 5 Tim Pendel bury

G TOF Pree Ss

Paul has advised us that due to changed circumstances he can no longer

write our GAMES COLUMN.

We extend our thanks to Paul for past support and help he has extended

to the club, and wish him success in his new undertaking. (Ed. HH.)

7S

TRADING POST
EPROMS for EXTENDED DOS. and BASIC

Are available from

Bob Kitch

7 Eurella Str.

KENMORE Q'ld. 4069

FOR SALE by various members :-

VZ programming by Tim Hartnell. $3.50

VZ OMNIBUS by Tim Hartnell $5.00

VZ Giant Book of Games by Tim Hartnett $5.00

VZ 300 computer with plug pack and manuals $495.

VZ 16K memory expansion. $30.

VZ Cassette recorder. $20.

NEC keyboard, adaptable to VZ 200 or 300. $20.

Printer SEIKOSHA GP250X as in last issue.

Keyboard Ex Totalisator. Would be adaptable. $15.

MASH:

There are several sellers, so get in touch with me. If you wish to

make an offer I will be pleased to pass it on. (Ed.)

OTHER V Z USER GROUPS

H.V.V.Z.U.G DISKMAG

P.O.Box 161 P.O.Box 600.

JESMOND NSW.2299. Taree NSW. 2430.

CENT.VIC.COMP.Club BRISBANE VZUG

24 Breen St. 63 Tingalpa St.

BENDIGO VIC 3550 WYNUM West. Q'ld. 4178

Graeme Bywater
P.O.Box 388

MORLEY W.A. 6062

